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Nanomachines: Methods to induce a directed motion at nanoscale
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The motion of bodies in a periodic potential with weak damping is discussed. A spontaneous directed motion
of particles is shown to be possible in the presence of external periodic forces at a velocity unambiguously
defined by the frequency of the periodic action and the spatial period of the potential. The principle of inducing
the directed motion at a precisely controlled velocity can be used to detiglogans of handling individual
molecules or molecular clusters on crystalline surfa@es;nanomachines’—objects capable of spontaneous
motion not only in the absence of an external force but also under the action of a force opposite to the direction
of motion (and thereby capable of carrying other partitlé€si) drives providing precisely controlled velocity
of motion; (iv) controllable tribological systems constructed by profiling friction surfaces in a specified manner
and applying an ultrasonic excitation. The dependence of the average system velocity on the average applied
force is shown to have plateaus of constant velocity at zero velocity and a set of equidistant discrete velocities
in the presence of periodic external perturbations. The problem of developing fully controlled hanomachines
can be formulated as the problem of controlling the width and position of the plateaus.
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I. INTRODUCTION Il. MOTION IN A PERIODIC POTENTIAL UNDER
THE ACTION OF PERIODIC FORCES

The t_endency to miniaturization of mechanical systems Let us consider one-dimensional motion of a body in a
and rapid development of nanotechnolog@s-5| pose a qrigdic potential with weak damping. The equation of mo-
guestion about the thgoretmal limits of mlnllaturlzatlon.. Ation for the body has the form
fundamental problem in development of micromechanical
systems at any level is the conversion of different types of mXx=F — px—Nsin(2mx/a), (en]
energy to energy of directed motion of the system. Most
ways of generating directed motion of molecular objects diswherex is the body coordinatem its mass,F the external
cussed in the literaturg6—12] are based on the interaction force, » the damping factorN the amplitude of thespa-
between a driven object and an inhomogeneous, commonlyally) periodic force, anch the wavelength of the periodic
periodically structured substrate. The latter can be eithepotential. The model was proposed by Tomlinson in 1929 as
asymmetric or symmetric. Directed motion in asymmetrica model of dry friction[13]. In the general case, we assume
potentials has been discussed extensively in the context dfiat both the tangential forde and the amplitudeN of the
molecular motor$8—10]. In this case, the directed motion is force acting from the periodic potential are periodic func-
unidirectional; it is fixed by the interaction between the sub-tions of time. In the following we are interested in determin-
strate and the object following the “ratchet-and-pawl!” prin- ing the dependence of the average velo¢ity of the mass
ciple (see, e.g.[2,6,7]). In the case of symmetric potentials, ({:--) here denotes averaging over tino® the average force;
the direction of motion originally is not fixed and is deter- after Tomlinson, we call this response function “the law of
mined dynamically. An example of this kind of dynamically friction” of the system. In determining the friction law of the
driven engine was given in recent publicati¢h$,12. Inthe  system two complementary approaches are possible; namely,
present paper, we show that the nanoengine descrijdd]fin  we either specify the periodic force and pose the question of
is a special case of a wider class of systems of a differemletermining the average velocity of motion, or specify a pe-
design, but with the same principles of control. In Sec. I, weriodically varying velocity and determine the average force
consider motion of an object in a spatially periodic potentialrequired for maintaining the motion. The key features of the
under the simultaneous action of a constant and an oscillataws of friction are the same in both formulations. We start
ing force, and discuss the dependence of the sliding velocityith the much simpler problem of determining the force at a
on the average driving force. The oscillating force gives risegiven periodically varying velocity.
to a specific feature of the force-velocity dependence: pla- Let us assume that a periodic perturbation with amplitude
teaus of constant velocity. In Sec. lll, we show that thesea; is applied to the motion at a constant velodity, so we
plateaus can be used for generating directed motion of othave
jects in a spatially periodic potential under the action of os-
cillating forces; the controllability of the width and position V=vqtvqCOSwt. 2
of the plateaus is discussed. In Sec. IV, we show that it is
possible to formulate simple topological rules determiningThe coordinate of the body as a function of time is
the direction and velocity of motion of different systems un-
der periodic actions. Section V is devoted to a discussion of X=X+ vt + ﬂsinwt, &)
possibilities to realize the nanomachines in practice. ®
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and the force acting on the body has the form A

2T U1 .
F=77(Uo+vlcOSwt)+NSIn? Xotvgt+ Esmwt .
4)

From here on we do not write the inertial foraex, since its
average value is identically equal to zero.

To emphasize the basic features of the law of friction for
this kind of motion, we start with the case where the dissi-
pative force is absent and find the average value of the cor

servative parf of the force(4):

av. velocity, <v >
av. velocity, <v >

»

force, F o force, F

4

a — without damping b ~ with damping

~ X 2 Uq .
F=N sin—- Xotuvot+ Esmwt . (5) FIG. 1. Dependence of the average velocity of the particle on
the average force in the case of a preassigned oscillating velocity

The idea of the calculation can be followed most easily in the(a) without and(b) with damping. The characteristic features of the
case where the amplitude of the velocity oscillations is mucH/eIocity-force characteristic in the presence of a periodic external
lower than the average sliding velocity; <v, (the case of perturbation arlateaus of constant velocity
arbitrary amplitude of oscillations is considered |at&iven
this assumption, the functigid) can be expanded in terms of The width of the plateaus depends on the amplitude of the

the small parametar; /vg: periodic action. Details of this dependence will be discussed
) ) ) in the next section.

= L eT ™ ™ V1. Obviously, for a plateau half-width larger thap, the

F =N sin— (Xo+vot) + —cos— (X +vot) —Sinwt | . ’ . . R AN
a Xotvolt a Xotuol) sine plateau crosses the ordinate aj@s shown in Fig. ()]. In

(6)  this case, directed motion is possible for a zero average force
, ) ) or a force applied in the direction opposite to the direction of
Let us determine the time-averaged value of this force. Threg,oiion. In other words, an object can produce a tractive

cases are possible. o force, e.g., it can carry a cargo. It is this property that will be
(1) If the average velocity is zerq;p=0, the average | sed below in designing nanomachines.

force is

2
<F>= N sin?xo. (7) I1l. DYNAMIC NANOMACHINES

By “nanomachines” we mean tribological systems with a
It can take any value in the intervad[N|<(F)<[NJ, and it  special form of the response characteristic “force—sliding
evidently corresponds to the static frictional force. velocity;” namely, it must exhibit plateaus of constant veloc-
(2) If the average velocity is nonzeroy# 0, and the con- ity whose width and positions may be controlled by external
ditionvo# aw/2m is satisfied, the average force is identically perturbations such that the system can be set in motion in an
equal to zero: arbitrary direction. A system obeying the above law of fric-
tion [Fig. 1(b)] does not satisfy this definition yet, since its
(F)=0. (8) state of rest is stable. Although in the absence of an average
force the body can move at a velocity corresponding to the
first plateau, it should be given an initial impetus to initiate
its motion. In the case of a controllable engine, it is desirable
to eliminate the zero plateau completely. Thus, the state of

(3) Finally, if the velocityvy=aw/27, the average value
of the first term in Eq(6) is zero, and the second term results
in a nonzero value of the average force:

T, 2m rest would become unstable and the engine would spontane-
(Fy=N——=sin—Xq. 9 ously come into motion. Let us show first that it is possible

G N to eliminate the zero platea@nd the static frictional force
long with it by varying the amplitude of the external peri-
dic perturbation. To do so, we return to consideration of the
action described by Ed2), but this time the perturbation is
not assumed to be small. The average fd&ecan be cal-
Yulated analytically using the following expansidrigl]:

In this case, the force depends on the initial coordinate an@
can take an arbitrary value in the interval|[N7v,/ao|
<(F)<|Nmv,/aw| at a given average velocity of motion.
Thus, the law of friction appears as shown schematicall
in Fig. 1(a). The dissipative force omitted in the foregoing
discussion will evidently lead only to uniform deformation
of the plot in proportion to the velocitjFig. 1(b)]. An es- o
sential feature of the law of friction in the presence of an ; _ _ 1k
external periodic action is the occurrence of plateaus of con- cosysinwt) = Jof ¢)+2k21 (=1 Jalycog2kat),
stant velocity not only at zero but also at finite velocities. (10
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sin( ¢ coswt) = 2;0 (— 1)Ko 4 1 () cog (2k+ 1) wt],

av. velocity, <v >
w

1y
whereJ, (¢) is thenth-order Bessel function and g
27TU]_ 12 ]
b= (12
62 04 06 08 1 12 14 18
It can be shown that the average value of the force is iden L force, Fo
tically equal to zero at any velocities except those satisfying
the condition
ke V 13
Uo= 2 - Onl ( )
whereV, is the velocity corresponding to the first plateau
andn is integer. At velocities determined by E(L3), the FIG. 2. Dependence of the average velocity of the particle on
average force is the average force under a periodically oscillating force derived by

numerical solution to Eq(16) for the following parameter values:

2 m=1, w=1, »=0.4, 2n/a=1, F;=2.3. The plateaus partially
(FY=N(—=1)"3,(v{/Vg)sin—Xg. (14)  overlap so that at slow increase and further decrease in the force
a there is hysteresis. The amplitude of oscillations was chosen so that

. . the zeroth-order plateau was absent.
For each discrete velocityl3), the force depends on the P

initial coordinate and can thus take an arbitrary value in a ) _ _ )
certain interval determined by the width of the corresponding ~ MX=Fo+Fysinot— 7X—[Ng+ N sin(wt+ ¢o)]

plateau: X sin(27x/a). (17)

—INJn(v1/ Vo) |<(F)<[NJy(v1/Vo)|. (19
The oscillations of amplitude and phase shift were chosen so
As the oscillation amplitude increases, the zeroth-order plathat the zeroth plateau vanished. In this case, the first and the
teau width decreases and eventually vanishes at a certajfegative first plateaus are asymmetrical so that in the ab-

amplitude. This means that the static frictional force van-sence of the average external forGer at low negative
ishes.

Our numerical simulations show that prescribing an oscil-
lating force(instead of an oscillating velocityeaves the key
features of the force—sliding velocity characteristic unaf-
fected. Let us consider a body that experiences a periodicall
oscillating force along with a constant tractive fofeg. The
equation of motion has the form

av. velocity, <v >
i

mX=Fy+F;sinot— 7x—Nsin(2wx/a). (16

A characteristic form of the average velocity as a function of —rrrerereeerrrre—rrrrererr S —
the average applied force is shown in Fig. 2, where the resur’¢-14-12 -1 08-06-04-02 | 02040808 1 12141618
of a numerical solution to Eq16) is presented. The ampli- force, Fy

tude of the oscillating force component was chosen so tha
the zeroth plateau vanished. In this case, the static frictione

force is absent. There is, however, equal probability that the -21
body will move either in the positive or in the negative di-
rection.

We will show that theasymmetry of the force-velocity
dependence and thus full controllability of the systean be FIG. 3. Dependence of the average velocity of the particle on
achieved by simultaneous oscillation of actions in the tanthe average force for simultaneous oscillation of force and ampli-

gential and normal directions. Figure 3 shows the result of aude of the potential derived by numerical solution to Exj) for
numerical solution of the following equation describing thethe following parameter valuesn=1, F;=2.3, =1, Ny=1, N;

motion of a body that experiences oscillating, normal and=0.6, =0.6, ¢,=2.5, 2r/a=1. The parameters were chosen so
tangential forces: that the zeroth-order plateau is absent.
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force9 the body is capable of steady macroscopic motion 107
only in the positive direction. The roles of the two plateausk/,

can be changed by changing the phase shyjft a a
] 4
IV. QUASISTATIC NANOMACHINES
In this section we will show that the frequeneyof per- 5]
turbations for which the macroscopically ordered motion of 3
the system is possible is not bounded from below. At low 4 @
external perturbation frequency the motion can be considere 2©
to be quasistatic. In this case, analysis of the motion is re 1
duced to examination of singular points and lines in the 21 @

space of slowly varying system parametéagurcation sets
The feasibility of practical realization of an induced motion

of nano-objects is discussed at the end of the paper. 0 3 1 g 8 b
A. Three-body system connected by rigid bonds K,
First let us examine the nanomachine proposddih In FIG. 4. Singular points of the potenti&l8) along with four

a simplified version, the machine represents a three-bodgifferent closed paths in thd (,I,) plane. On changing thig and
system connected by rigid bondlg and |, in length, in a |, lengths around the closed path 1 the phase is change®hyin
spatially periodic harmonic potential. In this case, the totalracing around path 3 by 27, in tracing the path 2 by zero, and in
potential energy of the three bodies is tracing the path 4 by-4m.

U=Ug(cog k(x—17)]+cogkx)+cogk(x+15)]), singular points enclosed by the contour. For example, con-
(18  tour 2 in Fig. 4 encloses no singular points; thus, in tracing
) ) ) ] around it, no final phase change occurs. Contour 4 encloses
wherek=2m/a and a is the spatial potential period. The two singular points with indices-1; thus, in tracing along
potential energy18) can be rewritten as this contour the phase is changed by A change in the
. . ~ > phase by a value of2means motion of a three-body system
U=Uo/(sinkl;—sinkl,)?+ (1+ coskl, + coskl,) by one spatial period of the potential. This leads us to the
X cog kx— @), (19 suggestion _that a periodiq change in bond lendthandl,
corresponding to the motion along any closed contour con-
with taining singular points with nonzero sums of indices will
result in a macroscopic translational motion of the system.
sinkl; —sinkl, On the other hand, a change in bond length corresponding to
tane= : (20 ith ingular points or with singular poin
1+ coskl, + coskl, a contour without any singular points or with singular points
with a zero sum of indices will not cause any translational
The phaseyp is a continuous and unambiguous function of motion. If some contour on thd {,1,) plane is traced peri-
the parameterk, andl, along any path on the {,1,) plane odically with a circular frequency, then the system will
that does not pass through singular points where the potentigtiove with the macroscopic (average velocity v
amplitude (19) vanishes and the phag20) is not defined. = (aw/2m)l.
The position of these points is specified by the conditions
sinkl;—sinkl,=0, 1+ coskl;+coskl,=0, or kl,=m=*x/3 B. Two bodies connected by a bond

+2mmn, kly=m=a/3+27m, wherem andn are integers. As a second example we consider a system of two bodies
The positions of several singular points on the,(5) plane  onnected by a bonldin length in a periodic potential. The
are shown in Fig. 4. All the points are obtained by a periodicgystem under study is assumed to model an electrically po-
repetition  of the two singular points kly.klz) |arized object on a crystalline surface. Application of an ex-
=(27/3,2m/3) and Kl kl;)=(4m/3,47/3) nearest to the ornq)| electric field changes the system length and the forces
origin of coordinates. Let us suppose that the lengthesnd _ of normal pressure acting on the two bodiesving to the

I can be controllably changed by some external actionpresence of the electric field component normal to the “sub-
When the first point in Fig. 4 is traced along a closed contoukrate” surfacg In this case, the normal forces acting on the
in the (I;,15) plane(contour 3, the phase is decreased by first and second bodies are oppositely directed. This in-
2, and when the second point is traced in the same directiogreases the periodic potential amplitude for one of the bodies

(contour 3, the phase is increased byr2Let us assign a ang decreases it for the other. The system described can be
topological index—1 to the first point and a topological in-  mggeled via the potential energy as

dex +1 to the second one. It is easy to verify that in the

general case of the bond lengths varying along an arbitrary U= (Ng+N;)cogk(x—1/2)]+ (Ng+Nj)cog k(x+1/2)]
closed contour not passing through singular points, the phase 5 —
is changed by 21, wherel is the sum of indices of all =2/Nj cog(kl/2) + N3 sir?(kl/2) cogkx— ) (21)
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with ] T, —
1 ! <0
tang= (N, /No)tan(kl/2). (22) B N S=0.7 N
Here N is the average periodic potential amplitude awhd B
is the change in the potential in response to the action of the L2
electric field component normal to the surface. 4
A set of singular points for which the phaseis not ] —— —
determined is given by the conditiomé, =0 and cogfl/2) 2 \ \"\ (\:\i
=0. In the (N;/Ng,kl) plane, the set consists of the points ] ~—
(0,r+ 27n). A change in the phase byr2corresponding to 8
translational motion of the system by one spatial period, oc- 0 2 411 b 8

curs on tracing any of these points along a closed contour of

an arbitrarily small radius. 5
C. Motion opposite to the force direction B—: f=1.0 \

The models considered above are of interest from the 2
standpoint of development of methods for manipulating ]
nano-objects, including those capable of carrying a load. L24_-
Hence, an important problem is to find the conditions ]
wherein the objects can move in the direction opposite to the 2_3
average force acting on them. To examine the problem, we ]
consider again a nanomachine consisting of three bodies in a
harmonic potential in the presence of a constant external 0 é ) *&U ’ 8‘ T E'l T
force — F represented by the terfx in the potential energy.
In this case, the total potential energy has the fdm FIG. 5. Bifurcation sets of a three-particle engine in the pres-

=Up{cogdk(x—I1)]+coskx)+cogk(x+1,)J}+Fx. Let us find ence of a constant external force. The path entirely enclosing the
a bifurcation set of this potential, defined as a set of parambifurcation set exists only fof <1.

eter values for which a change in the number of equilibrium

positions of the potential occufand thus, generally speak- a model for a nanoparticle possessing electrostrictive prop-
ing, continuous and unambiguous dependence of the equilierties and placed on a crystalline surface in a variable electric
rium position of the system on the control parameters is viofield that contains both tangential and normal components.
lated. Equilibrium positions are determined by the condition Under the action of the field the particle changes its size. In
dU/9x=0. As a result of a bifurcation, a coalescence ofthe case of a particle consisting of a material whose spatial
stable and unstable equilibrium points occurs, whereuposymmetry group contains an inversion center, the change in
both points disappear. At the bifurcation point itself, a van-the particle size is a second-order effect in the field intensity.
ishing stationary point is an inflection point, where At the same time, the particle is polarized in proportion to
9°Ul9x?>=0. In the case under consideration, these twdahe tangential electric field component, and a change of op-

equations can be brought into the form posite sign in the pressure of the negatively and positively
charged particle ends takes place. Such a system can be mod-
(1+coskl; +coskl,)?+ (sinkl; —sinkl,)?= (F/Ugk)?. eled by the potential energ1) with
(23)
I=lo+BE2 and N;=aE E|, (24)

Figure 5 shows bifurcation sets determined by E{) for

two values of the parametérF/Uk. Translational motion whereE, andE, are the normal and tangential components
is induced only in the case where the paramigenidi, are  of the electric field E2=E2+EZ2, B is the electrostrictive
changed along a contour that contains a closed bifurcatiopgnstant, andv is the particle polarizability. For an ellipti-

set originating from the former singular point. Evidently, this cally polarized variable electric field obeying the ldy
is possible only forf<1. Thus, the maximum theoretical —g | coset, E,=E,, sinwt, we get

tractive force of the engine under study F$,o,=Ugk. An
analogous calculation for a two-body engine with poten- I=I0+(,8/2)(Ef ot Eﬁo)+(,3/2)(Ei o— Efo)cos 2wt,
tial energy U=(Ngy+N;)cogk(x—1/2)]+ (Ng— N;)cogk(x ’ ’ ’ ’ (25)
+1/2)] gives for the maximum tractive forde,,,=2Ngk.
N;=(al2)E, oE; oSin 2wt, (26)
D. Nonpolarized particles

The foregoing systems are models of a polarized particlt\aNhence it follows that

(dipole) in a variable electric field. Of greater practical im-
portance, however, is the possibility of manipulating neutral 5 .
and nonpolarizedbut polarizablgparticles. Let us formulate B(EL o~ Ej0)/2

l—lo—ﬂ<Ejo+E"‘,o>/2>2( N,

2
aEL,OEII,O/Z) =1. @7
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l The singular points of the potentié28) are determined by
X the condition of vanishing of its amplitude, that is,

‘ (ky+Kky) "1 sin (ky+ko)L/2]
+(ky—ky) " tsin(k;—ky)L/2]=0. (29

Note that any changes df due to electrostriction do not
- " > affect the produck,L/2=7L/a=#N, which is just propor-
l k>

tional to the numbeN of atoms in the contact region. The set
of discrete values of particle lengths for which the potential
amplitude vanishes is

k1 k,L=2mn, (30)

wheren is an integer. In tracing these singular points in the
(L,N,) plane around a closed path, the particle will travel a
distance of one spatial period of the substrate. As shown
FIG. 6. A schematic representation of a nanoparticle with the€arlier, this can be achieved by applying an electric field to
crystal lattice constant2/k, on a flat crystalline surface with pe- the particle.
riod 27/k; . Let us discuss briefly the influence of thermal noise on the
induction of directed motion of particles. In the case of a
three-body machine, the main effect of changing the bond
; . - 2 length is motion of the position of the potential minimum of
elllpzse centered  at thez po'Qt l’Nl)_(lojL(B/z)(Ei*P the system. This can be most easily seen at a special choice
+Ej0),0). Forlo+(BI2)(EL ot Ejg)=m+2mmn, the ellipti- ¢ he phase shift of oscillations of both lengths: If we
cal contour(27) encloses a singular point, and in tracing -hoose |,=(4/3)mlk+1,cos@t) and |,=(4/3)m/k

around it the system moves through a distance of one spatial |, COS(t-+¢) with @=(2/3)7 andl,<1/k, then the poten-
period of the potential. Note that a change of one period ir}ial energy(18) takes the form

the electric field corresponds to two path tracings around the
closed contoufas is evident from Eq$25) and(26)], so that Uoklo[sin(kx+ 7/3)cog wt+ 27/3) — sin(kx— 7/3) cost ]

the system moves through a distance of two spatial periods

of the potential during one period of electric field oscilla- ~ =Uoklo(vV3/2)cog kx+ wt+ 7/3).

tions.

How can the foregoing models be realized in practice?Ve then .have'to deal just with a poltential of constant form
Let us examine a particle of lengthand crystal lattice con- Propagating wlth constant velocity/ k in the negative (_1|rec-
stant 2r/k, located on a crystalline substrate with period tion, that is with a “traveling potential ratche{®]. Neither
2m/k, (Fig. 6). Letu be the current coordinate of points on inertial effects nor t_hern_]al fluctuations can change_ the char-
the particle surface counted off from the center of mass ofcter of the motion in this case: The average velocity always
the particle anck be the coordinate of the center of mass ofnas the same sign as it would have without fluctuations, but
the particle in an external coordinate system. The interactiof? 9enerally smaller in modulus. At a more general choice of
between the particle and the substrate is assumed to be BBase shift, the three-body machine represents an object in a
weak that deformation of the particle under the action of thdraveling and simultaneously pulsating potential. In the qua-
interaction potential can be neglecte@stimations show Sistatic case, due to the symmetry of the potential, the pulsa-
that this condition is satisfied for nanoparticles, provided théion by itself cannot give rise to any directed motion. We
interaction is of the van der Waals type—for example, forthus suppose that—in the cases considered—the thermal
particles of almost any “hard material” on a graphite sur- N0ise does not disturb the directed motion.
face) To calculate the dependence of the particle potential
energy on the coordinate of its center of mass, we write the V. CONCLUSION
charge density distribution over the particle surfaceqgas

= Coskou and the potential distribution produced by thethe minimum characteristic particle size with which the in-

= +u). ial i i - . . ) ) .
subsrate ag= o cosky(x +u). The potential interaction en duction of directed motion of the particle on a crystalline

ergy between the particle and the substrate can be written Ribstrate is possible. If the length of the particle is chosen

equal to the critical valug30), an arbitrarily small periodic
change of the length around this value combined with a po-

A set of valuesl and N, satisfying this equation forms an

In conclusion, let us estimate the order of magnitude of

L/2
U= f Jo®o CoSKoU cosk(X+u)du larization of the particle and action of a normal electric field
—L2 will give rise to its directed motion. In this case the mini-
_ cosk:x(k:+ ko)~ L sinl (ki + ko) L/2 mum particle size is that where the conditi@) is satisfied
fo%o x(katko) k)L /2] for the first time. However, even if the length of the particle
+(ky— ko) " tsin(k;—ky)L/2]. (29 is chosen by chance, the “distance” to the nearest singular
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point is in any case not larger than the lattice constaaf  even for smaller sizes, provided the length of the particle is
the substrate. Thus, oscillation of the particle length with archosen exactly equabr very neay to the critical valug30).
amplitudea combined with the action of the normal compo-  Thus, the models considered in this paper show the pos-
nent of the electric field will lead to tracing around the near-sibility of directed motion of nanoparticles along a crystal-
est singular point and thus to a directed motion of the parline surface under the action of an oscillating elliptically po-
ticle. The minimum size of the particle is then determined bylarized electric field. The direction of the particle motion is
the condition that the change in length of the particle undedetermined by the direction of polarizatiéand, thereby, by
the action of an electric field with a realistic intensity shouldthe direction of tracing singular points in the parameter
be about the lattice constant. As an example, consider a paplane. The magnitude of the velocity of motion can be con-
ticle of BaTiO; (this material is chosen due to its large elec-trolled independently of its direction by the frequency of the
trostrictive constantat the surface of graphite. The electro- applied periodic field.

strictive deformation of BaTiQunder the action of an elec-
tric field with intensity E=2x10° V/m achieves e =4

X 10 * [15]. The lattice constant of graphite is aboat
=2.5A. The condition for reaching the nearest singular | am thankful to K. H. Antony, O. K. Dudko, B. N. J.
pointisAL=¢lL=a. Thus directed motion is possible in any Persson, and M. Urbakh for useful discussions of the paper,
case for particles whose size is abdot larger than 6 and to the German Academic Exchange Seriz&AD) for

x 10> A =600 nm. However, the motion should be possiblefinancial support.
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