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Nanomachines: Methods to induce a directed motion at nanoscale

V. L. Popov
Technical University of Berlin, Institute of Mechanics, Sekretariat C8-4, 10623 Berlin, Germany

and Institute of Strength Physics and Materials Science, Russian Academy of Sciences, 634021 Tomsk, Russia
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The motion of bodies in a periodic potential with weak damping is discussed. A spontaneous directed motion
of particles is shown to be possible in the presence of external periodic forces at a velocity unambiguously
defined by the frequency of the periodic action and the spatial period of the potential. The principle of inducing
the directed motion at a precisely controlled velocity can be used to develop~i! means of handling individual
molecules or molecular clusters on crystalline surfaces;~ii ! ‘‘nanomachines’’—objects capable of spontaneous
motion not only in the absence of an external force but also under the action of a force opposite to the direction
of motion ~and thereby capable of carrying other particles!; ~iii ! drives providing precisely controlled velocity
of motion;~iv! controllable tribological systems constructed by profiling friction surfaces in a specified manner
and applying an ultrasonic excitation. The dependence of the average system velocity on the average applied
force is shown to have plateaus of constant velocity at zero velocity and a set of equidistant discrete velocities
in the presence of periodic external perturbations. The problem of developing fully controlled nanomachines
can be formulated as the problem of controlling the width and position of the plateaus.
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I. INTRODUCTION

The tendency to miniaturization of mechanical syste
and rapid development of nanotechnologies@1–5# pose a
question about the theoretical limits of miniaturization.
fundamental problem in development of micromechani
systems at any level is the conversion of different types
energy to energy of directed motion of the system. M
ways of generating directed motion of molecular objects d
cussed in the literature@6–12# are based on the interactio
between a driven object and an inhomogeneous, comm
periodically structured substrate. The latter can be eit
asymmetric or symmetric. Directed motion in asymmet
potentials has been discussed extensively in the contex
molecular motors@8–10#. In this case, the directed motion
unidirectional; it is fixed by the interaction between the su
strate and the object following the ‘‘ratchet-and-pawl’’ pri
ciple ~see, e.g.,@2,6,7#!. In the case of symmetric potential
the direction of motion originally is not fixed and is dete
mined dynamically. An example of this kind of dynamical
driven engine was given in recent publications@11,12#. In the
present paper, we show that the nanoengine described in@11#
is a special case of a wider class of systems of a diffe
design, but with the same principles of control. In Sec. II,
consider motion of an object in a spatially periodic poten
under the simultaneous action of a constant and an osc
ing force, and discuss the dependence of the sliding velo
on the average driving force. The oscillating force gives r
to a specific feature of the force-velocity dependence: p
teaus of constant velocity. In Sec. III, we show that the
plateaus can be used for generating directed motion of
jects in a spatially periodic potential under the action of
cillating forces; the controllability of the width and positio
of the plateaus is discussed. In Sec. IV, we show that i
possible to formulate simple topological rules determin
the direction and velocity of motion of different systems u
der periodic actions. Section V is devoted to a discussion
possibilities to realize the nanomachines in practice.
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II. MOTION IN A PERIODIC POTENTIAL UNDER
THE ACTION OF PERIODIC FORCES

Let us consider one-dimensional motion of a body in
periodic potential with weak damping. The equation of m
tion for the body has the form

mẍ5F2h ẋ2N sin~2px/a!, ~1!

wherex is the body coordinate,m its mass,F the external
force, h the damping factor,N the amplitude of the~spa-
tially! periodic force, anda the wavelength of the periodic
potential. The model was proposed by Tomlinson in 1929
a model of dry friction@13#. In the general case, we assum
that both the tangential forceF and the amplitudeN of the
force acting from the periodic potential are periodic fun
tions of time. In the following we are interested in determi
ing the dependence of the average velocity^ẋ& of the mass
~^¯& here denotes averaging over time! on the average force
after Tomlinson, we call this response function ‘‘the law
friction’’ of the system. In determining the friction law of th
system two complementary approaches are possible; nam
we either specify the periodic force and pose the question
determining the average velocity of motion, or specify a p
riodically varying velocity and determine the average for
required for maintaining the motion. The key features of t
laws of friction are the same in both formulations. We st
with the much simpler problem of determining the force a
given periodically varying velocity.

Let us assume that a periodic perturbation with amplitu
v1 is applied to the motion at a constant velocityv0 , so we
have

v5v01v1 cosvt. ~2!

The coordinate of the body as a function of time is

x5x01v0t1
v1

v
sinvt, ~3!
©2003 The American Physical Society08-1
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and the force acting on the body has the form

F5h~v01v1 cosvt !1N sin
2p

a S x01v0t1
v1

v
sinvt D .

~4!

From here on we do not write the inertial forcemẍ, since its
average value is identically equal to zero.

To emphasize the basic features of the law of friction
this kind of motion, we start with the case where the dis
pative force is absent and find the average value of the c
servative partF̃ of the force~4!:

F̃5N sin
2p

a S x01v0t1
v1

v
sinvt D . ~5!

The idea of the calculation can be followed most easily in
case where the amplitude of the velocity oscillations is mu
lower than the average sliding velocity,v1!v0 ~the case of
arbitrary amplitude of oscillations is considered later!. Given
this assumption, the function~5! can be expanded in terms o
the small parameterv1 /v0 :

F̃5NH sin
2p

a
~x01v0t !1

2p

a
cos

2p

a
~x01v0t !

v1

v
sinvtJ .

~6!

Let us determine the time-averaged value of this force. Th
cases are possible.

~1! If the average velocity is zero,v050, the average
force is

^F&5N sin
2p

a
x0 . ~7!

It can take any value in the interval2uNu,^F&,uNu, and it
evidently corresponds to the static frictional force.

~2! If the average velocity is nonzero,v0Þ0, and the con-
dition v0Þav/2p is satisfied, the average force is identica
equal to zero:

^F&50. ~8!

~3! Finally, if the velocityv05av/2p, the average value
of the first term in Eq.~6! is zero, and the second term resu
in a nonzero value of the average force:

^F&5N
pv1

av
sin

2p

a
x0 . ~9!

In this case, the force depends on the initial coordinate
can take an arbitrary value in the interval2uNpv1 /avu
,^F&,uNpv1 /avu at a given average velocity of motion

Thus, the law of friction appears as shown schematic
in Fig. 1~a!. The dissipative force omitted in the foregoin
discussion will evidently lead only to uniform deformatio
of the plot in proportion to the velocity@Fig. 1~b!#. An es-
sential feature of the law of friction in the presence of
external periodic action is the occurrence of plateaus of c
stant velocity not only at zero but also at finite velocitie
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The width of the plateaus depends on the amplitude of
periodic action. Details of this dependence will be discus
in the next section.

Obviously, for a plateau half-width larger thanhv0 , the
plateau crosses the ordinate axis@as shown in Fig. 1~b!#. In
this case, directed motion is possible for a zero average fo
or a force applied in the direction opposite to the direction
motion. In other words, an object can produce a tract
force, e.g., it can carry a cargo. It is this property that will
used below in designing nanomachines.

III. DYNAMIC NANOMACHINES

By ‘‘nanomachines’’ we mean tribological systems with
special form of the response characteristic ‘‘force–slidi
velocity;’’ namely, it must exhibit plateaus of constant velo
ity whose width and positions may be controlled by exter
perturbations such that the system can be set in motion i
arbitrary direction. A system obeying the above law of fri
tion @Fig. 1~b!# does not satisfy this definition yet, since i
state of rest is stable. Although in the absence of an ave
force the body can move at a velocity corresponding to
first plateau, it should be given an initial impetus to initia
its motion. In the case of a controllable engine, it is desira
to eliminate the zero plateau completely. Thus, the state
rest would become unstable and the engine would spont
ously come into motion. Let us show first that it is possib
to eliminate the zero plateau~and the static frictional force
along with it! by varying the amplitude of the external per
odic perturbation. To do so, we return to consideration of
action described by Eq.~2!, but this time the perturbation is
not assumed to be small. The average force~5! can be cal-
culated analytically using the following expansions@14#:

cos~c sinvt !5J0~c!12(
k51

`

~21!kJ2k~c!cos~2kvt !,

~10!

FIG. 1. Dependence of the average velocity of the particle
the average force in the case of a preassigned oscillating velo
~a! without and~b! with damping. The characteristic features of th
velocity-force characteristic in the presence of a periodic exte
perturbation areplateaus of constant velocity.
8-2
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sin~c cosvt !52(
k50

`

~21!kJ2k11~c!cos@~2k11!vt#,

~11!

whereJn(c) is thenth-order Bessel function and

c5
2pv1

av
. ~12!

It can be shown that the average value of the force is id
tically equal to zero at any velocities except those satisfy
the condition

v05
va

2p
5V0n, ~13!

where V0 is the velocity corresponding to the first plate
and n is integer. At velocities determined by Eq.~13!, the
average force is

^F&5N~21!nJn~v1 /V0!sin
2p

a
x0 . ~14!

For each discrete velocity~13!, the force depends on th
initial coordinate and can thus take an arbitrary value in
certain interval determined by the width of the correspond
plateau:

2uNJn~v1 /V0!u<^F&<uNJn~v1 /V0!u. ~15!

As the oscillation amplitude increases, the zeroth-order
teau width decreases and eventually vanishes at a ce
amplitude. This means that the static frictional force va
ishes.

Our numerical simulations show that prescribing an os
lating force~instead of an oscillating velocity! leaves the key
features of the force–sliding velocity characteristic un
fected. Let us consider a body that experiences a periodic
oscillating force along with a constant tractive forceF0 . The
equation of motion has the form

mẍ5F01F1 sinvt2h ẋ2N sin~2px/a!. ~16!

A characteristic form of the average velocity as a function
the average applied force is shown in Fig. 2, where the re
of a numerical solution to Eq.~16! is presented. The ampli
tude of the oscillating force component was chosen so
the zeroth plateau vanished. In this case, the static frictio
force is absent. There is, however, equal probability that
body will move either in the positive or in the negative d
rection.

We will show that theasymmetry of the force-velocit
dependence and thus full controllability of the systemcan be
achieved by simultaneous oscillation of actions in the t
gential and normal directions. Figure 3 shows the result o
numerical solution of the following equation describing t
motion of a body that experiences oscillating, normal a
tangential forces:
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mẍ5F01F1 sinvt2h ẋ2@N01N1 sin~vt1w0!#

3sin~2px/a!. ~17!

The oscillations of amplitude and phase shift were chosen
that the zeroth plateau vanished. In this case, the first and
negative first plateaus are asymmetrical so that in the
sence of the average external force~or at low negative

FIG. 2. Dependence of the average velocity of the particle
the average force under a periodically oscillating force derived
numerical solution to Eq.~16! for the following parameter values
m51, v51, h50.4, 2p/a51, F152.3. The plateaus partially
overlap so that at slow increase and further decrease in the f
there is hysteresis. The amplitude of oscillations was chosen so
the zeroth-order plateau was absent.

FIG. 3. Dependence of the average velocity of the particle
the average force for simultaneous oscillation of force and am
tude of the potential derived by numerical solution to Eq.~17! for
the following parameter values:m51, F152.3, v51, N051, N1

50.6, h50.6, w052.5, 2p/a51. The parameters were chosen
that the zeroth-order plateau is absent.
8-3
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forces! the body is capable of steady macroscopic mot
only in the positive direction. The roles of the two platea
can be changed by changing the phase shiftw0 .

IV. QUASISTATIC NANOMACHINES

In this section we will show that the frequencyv of per-
turbations for which the macroscopically ordered motion
the system is possible is not bounded from below. At l
external perturbation frequency the motion can be conside
to be quasistatic. In this case, analysis of the motion is
duced to examination of singular points and lines in
space of slowly varying system parameters~bifurcation sets!.
The feasibility of practical realization of an induced motio
of nano-objects is discussed at the end of the paper.

A. Three-body system connected by rigid bonds

First let us examine the nanomachine proposed in@11#. In
a simplified version, the machine represents a three-b
system connected by rigid bondsl 1 and l 2 in length, in a
spatially periodic harmonic potential. In this case, the to
potential energy of the three bodies is

U5U0„cos@k~x2 l 1!#1cos~kx!1cos@k~x1 l 2!#…,
~18!

where k52p/a and a is the spatial potential period. Th
potential energy~18! can be rewritten as

U5U0A~sinkl12sinkl2!21~11coskl11coskl2!2

3cos~kx2w!, ~19!

with

tanw5
sinkl12sinkl2

11coskl11coskl2
. ~20!

The phasew is a continuous and unambiguous function
the parametersl 1 and l 2 along any path on the (l 1 ,l 2) plane
that does not pass through singular points where the pote
amplitude~19! vanishes and the phase~20! is not defined.
The position of these points is specified by the conditio
sinkl12sinkl250, 11coskl11coskl250, or kl15p6p/3
12pn, kl25p6p/312pm, wherem and n are integers.
The positions of several singular points on the (l 1 ,l 2) plane
are shown in Fig. 4. All the points are obtained by a perio
repetition of the two singular points (kl1 ,kl2)
5(2p/3,2p/3) and (kl1 ,kl2)5(4p/3,4p/3) nearest to the
origin of coordinates. Let us suppose that the lengthsl 1 and
l 2 can be controllably changed by some external acti
When the first point in Fig. 4 is traced along a closed cont
in the (l 1 ,l 2) plane ~contour 1!, the phase is decreased b
2p, and when the second point is traced in the same direc
~contour 3!, the phase is increased by 2p. Let us assign a
topological index21 to the first point and a topological in
dex 11 to the second one. It is easy to verify that in t
general case of the bond lengths varying along an arbit
closed contour not passing through singular points, the ph
is changed by 2pI , where I is the sum of indices of al
02660
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singular points enclosed by the contour. For example, c
tour 2 in Fig. 4 encloses no singular points; thus, in trac
around it, no final phase change occurs. Contour 4 enclo
two singular points with indices21; thus, in tracing along
this contour the phase is changed by24p. A change in the
phase by a value of 2p means motion of a three-body syste
by one spatial period of the potential. This leads us to
suggestion that a periodic change in bond lengthsl 1 and l 2
corresponding to the motion along any closed contour c
taining singular points with nonzero sums of indices w
result in a macroscopic translational motion of the syste
On the other hand, a change in bond length correspondin
a contour without any singular points or with singular poin
with a zero sum of indices will not cause any translation
motion. If some contour on the (l 1 ,l 2) plane is traced peri-
odically with a circular frequencyv, then the system will
move with the macroscopic ~average! velocity v
5(av/2p)I .

B. Two bodies connected by a bond

As a second example we consider a system of two bo
connected by a bondl in length in a periodic potential. The
system under study is assumed to model an electrically
larized object on a crystalline surface. Application of an e
ternal electric field changes the system length and the fo
of normal pressure acting on the two bodies~owing to the
presence of the electric field component normal to the ‘‘s
strate’’ surface!. In this case, the normal forces acting on t
first and second bodies are oppositely directed. This
creases the periodic potential amplitude for one of the bod
and decreases it for the other. The system described ca
modeled via the potential energy as

U5~N01N1!cos@k~x2 l /2!#1~N01N1!cos@k~x1 l /2!#

52AN0
2 cos2~kl/2!1N1

2 sin2~kl/2! cos~kx2w! ~21!

FIG. 4. Singular points of the potential~18! along with four
different closed paths in the (l 1 ,l 2) plane. On changing thel 1 and
l 2 lengths around the closed path 1 the phase is changed by22p, in
tracing around path 3 by12p, in tracing the path 2 by zero, and i
tracing the path 4 by24p.
8-4
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with

tanw5~N1 /N0!tan~kl/2!. ~22!

HereN0 is the average periodic potential amplitude andN1
is the change in the potential in response to the action of
electric field component normal to the surface.

A set of singular points for which the phasew is not
determined is given by the conditionsN150 and cos(kl/2)
50. In the (N1 /N0 ,kl) plane, the set consists of the poin
(0,p12pn). A change in the phase by 2p, corresponding to
translational motion of the system by one spatial period,
curs on tracing any of these points along a closed contou
an arbitrarily small radius.

C. Motion opposite to the force direction

The models considered above are of interest from
standpoint of development of methods for manipulat
nano-objects, including those capable of carrying a lo
Hence, an important problem is to find the conditio
wherein the objects can move in the direction opposite to
average force acting on them. To examine the problem,
consider again a nanomachine consisting of three bodies
harmonic potential in the presence of a constant exte
force2F represented by the termFx in the potential energy
In this case, the total potential energy has the formU
5U0$cos@k(x2l1)#1cos(kx)1cos@k(x1l2)#%1Fx. Let us find
a bifurcation set of this potential, defined as a set of para
eter values for which a change in the number of equilibri
positions of the potential occurs~and thus, generally speak
ing, continuous and unambiguous dependence of the equ
rium position of the system on the control parameters is v
lated!. Equilibrium positions are determined by the conditi
]U/]x50. As a result of a bifurcation, a coalescence
stable and unstable equilibrium points occurs, whereu
both points disappear. At the bifurcation point itself, a va
ishing stationary point is an inflection point, whe
]2U/]x250. In the case under consideration, these t
equations can be brought into the form

~11coskl11coskl2!21~sinkl12sinkl2!25~F/U0k!2.

~23!

Figure 5 shows bifurcation sets determined by Eq.~23! for
two values of the parameterf 5F/U0k. Translational motion
is induced only in the case where the parametersl 1 andl 2 are
changed along a contour that contains a closed bifurca
set originating from the former singular point. Evidently, th
is possible only forf ,1. Thus, the maximum theoretica
tractive force of the engine under study isFmax5U0k. An
analogous calculation for a two-body engine with pote
tial energy U5(N01N1)cos@k(x2l/2)#1(N02N1)cos@k(x
1l/2)# gives for the maximum tractive forceFmax52N0k.

D. Nonpolarized particles

The foregoing systems are models of a polarized part
~dipole! in a variable electric field. Of greater practical im
portance, however, is the possibility of manipulating neu
and nonpolarized~but polarizable! particles. Let us formulate
02660
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a model for a nanoparticle possessing electrostrictive pr
erties and placed on a crystalline surface in a variable elec
field that contains both tangential and normal compone
Under the action of the field the particle changes its size
the case of a particle consisting of a material whose spa
symmetry group contains an inversion center, the chang
the particle size is a second-order effect in the field intens
At the same time, the particle is polarized in proportion
the tangential electric field component, and a change of
posite sign in the pressure of the negatively and positiv
charged particle ends takes place. Such a system can be
eled by the potential energy~21! with

l 5 l 01bE2 and N15aE'Ei , ~24!

whereE' andEi are the normal and tangential componen
of the electric field,E25E'

2 1Ei
2, b is the electrostrictive

constant, anda is the particle polarizability. For an ellipti-
cally polarized variable electric field obeying the lawE'

5E',0 cosvt, Ei5Ei ,0 sinvt, we get

l 5 l 01~b/2!~E',0
2 1Ei ,0

2 !1~b/2!~E',0
2 2Ei ,0

2 !cos 2vt,

~25!

N15~a/2!E',0Ei ,0 sin 2vt, ~26!

whence it follows that

S l 2 l 02b~E',0
2 1Ei ,0

2 !/2

b~E',0
2 2Ei ,0

2 !/2 D 2

1S N1

aE',0Ei ,0/2D
2

51. ~27!

FIG. 5. Bifurcation sets of a three-particle engine in the pr
ence of a constant external force. The path entirely enclosing
bifurcation set exists only forf ,1.
8-5
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A set of valuesl and N1 satisfying this equation forms a
ellipse centered at the point (l ,N1)5„l 01(b/2)(E',0

2

1Ei ,0
2 ),0…. For l 01(b/2)(E',0

2 1Ei ,0
2 )5p12pn, the ellipti-

cal contour~27! encloses a singular point, and in tracin
around it the system moves through a distance of one sp
period of the potential. Note that a change of one period
the electric field corresponds to two path tracings around
closed contour@as is evident from Eqs.~25! and~26!#, so that
the system moves through a distance of two spatial per
of the potential during one period of electric field oscill
tions.

How can the foregoing models be realized in practic
Let us examine a particle of lengthL and crystal lattice con-
stant 2p/k2 located on a crystalline substrate with peri
2p/k1 ~Fig. 6!. Let u be the current coordinate of points o
the particle surface counted off from the center of mass
the particle andx be the coordinate of the center of mass
the particle in an external coordinate system. The interac
between the particle and the substrate is assumed to b
weak that deformation of the particle under the action of
interaction potential can be neglected.~Estimations show
that this condition is satisfied for nanoparticles, provided
interaction is of the van der Waals type—for example,
particles of almost any ‘‘hard material’’ on a graphite su
face.! To calculate the dependence of the particle poten
energy on the coordinate of its center of mass, we write
charge density distribution over the particle surface asq
5q0 cosk2u and the potential distribution produced by th
substrate asw5w0 cosk1(x1u). The potential interaction en
ergy between the particle and the substrate can be writte

U5E
2L/2

L/2

q0w0 cosk2u cosk1~x1u!du

5q0w0 cosk1x~k11k2!21 sin@~k11k2!L/2#

1~k12k2!21 sin@~k12k2!L/2#. ~28!

FIG. 6. A schematic representation of a nanoparticle with
crystal lattice constant 2p/k2 on a flat crystalline surface with pe
riod 2p/k1 .
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The singular points of the potential~28! are determined by
the condition of vanishing of its amplitude, that is,

~k11k2!21 sin@~k11k2!L/2#

1~k12k2!21 sin@~k12k2!L/2#50. ~29!

Note that any changes ofL due to electrostriction do no
affect the productk2L/25pL/a5pN, which is just propor-
tional to the numberN of atoms in the contact region. The s
of discrete values of particle lengths for which the poten
amplitude vanishes is

k1L52pn, ~30!

wheren is an integer. In tracing these singular points in t
(L,N1) plane around a closed path, the particle will trave
distance of one spatial period of the substrate. As sho
earlier, this can be achieved by applying an electric field
the particle.

Let us discuss briefly the influence of thermal noise on
induction of directed motion of particles. In the case of
three-body machine, the main effect of changing the bo
length is motion of the position of the potential minimum
the system. This can be most easily seen at a special ch
of the phase shift of oscillations of both lengths: If w
choose l 15(4/3)p/k1 l 0 cos(vt) and l 25(4/3)p/k
1 l 0 cos(vt1w) with w5(2/3)p andl 0!1/k, then the poten-
tial energy~18! takes the form

U0kl0@sin~kx1p/3!cos~vt12p/3!2sin~kx2p/3!cost#

5U0kl0~)/2!cos~kx1vt1p/3!.

We then have to deal just with a potential of constant fo
propagating with constant velocityv/k in the negative direc-
tion, that is with a ‘‘traveling potential ratchet’’@6#. Neither
inertial effects nor thermal fluctuations can change the ch
acter of the motion in this case: The average velocity alw
has the same sign as it would have without fluctuations,
is generally smaller in modulus. At a more general choice
phase shift, the three-body machine represents an object
traveling and simultaneously pulsating potential. In the q
sistatic case, due to the symmetry of the potential, the pu
tion by itself cannot give rise to any directed motion. W
thus suppose that—in the cases considered—the the
noise does not disturb the directed motion.

V. CONCLUSION

In conclusion, let us estimate the order of magnitude
the minimum characteristic particle size with which the i
duction of directed motion of the particle on a crystallin
substrate is possible. If the length of the particle is cho
equal to the critical value~30!, an arbitrarily small periodic
change of the length around this value combined with a
larization of the particle and action of a normal electric fie
will give rise to its directed motion. In this case the min
mum particle size is that where the condition~30! is satisfied
for the first time. However, even if the length of the partic
is chosen by chance, the ‘‘distance’’ to the nearest singu

e

8-6



a
o-
ar
a
b
de
ld
p
c
o-
-

la
y

le

is

os-
l-

o-
is

ter
n-
he

.
per,

NANOMACHINES: METHODS TO INDUCE A DIRECTED . . . PHYSICAL REVIEW E68, 026608 ~2003!
point is in any case not larger than the lattice constanta of
the substrate. Thus, oscillation of the particle length with
amplitudea combined with the action of the normal comp
nent of the electric field will lead to tracing around the ne
est singular point and thus to a directed motion of the p
ticle. The minimum size of the particle is then determined
the condition that the change in length of the particle un
the action of an electric field with a realistic intensity shou
be about the lattice constant. As an example, consider a
ticle of BaTiO3 ~this material is chosen due to its large ele
trostrictive constant! at the surface of graphite. The electr
strictive deformation of BaTiO3 under the action of an elec
tric field with intensity E523106 V/m achieves «54
31024 @15#. The lattice constant of graphite is abouta
52.5 Å. The condition for reaching the nearest singu
point isDL5«L.a. Thus directed motion is possible in an
case for particles whose size is about~or larger than! 6
3103 Å 5600 nm. However, the motion should be possib
c-

02660
n

-
r-
y
r

ar-
-

r

even for smaller sizes, provided the length of the particle
chosen exactly equal~or very near! to the critical value~30!.

Thus, the models considered in this paper show the p
sibility of directed motion of nanoparticles along a crysta
line surface under the action of an oscillating elliptically p
larized electric field. The direction of the particle motion
determined by the direction of polarization~and, thereby, by
the direction of tracing singular points in the parame
plane!. The magnitude of the velocity of motion can be co
trolled independently of its direction by the frequency of t
applied periodic field.
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